

Universidade de Brasília
Instituto de Psicologia
Departamento de Processos Psicológicos Básicos
Programa de Pós-Graduação em Ciências do Comportamento

Dissertação de Mestrado

The role of numerical ordinality on basic arithmetic in preschoolers

Suzane Garcia de Santana

Brasília, 17 de julho de 2023.

Universidade de Brasília
 Instituto de Psicologia
 Departamento de Processos Psicológicos Básicos
 Programa de Pós-Graduação em Ciências do Comportamento

Dissertação de Mestrado

O papel da ordinalidade numérica na aritmética básica de pré-escolares

Suzane Garcia de Santana

Brasília, 17 de julho de 2023

O papel da ordinalidade numérica na aritmética básica de pré-escolares

Suzane Garcia de Santana

> Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciências do Comportamento, do Instituto de Psicologia da Universidade de Brasília, como parte dos requisitos para obtenção do título de Mestre em Ciências do Comportamento (Área de Concentração: Cognição e Neurociências do Comportamento).
> Orientador: Ricardo José de Moura

Prof. Dr. Ricardo José de Moura (Presidente)

Programa de Pós-Graduação em Ciências do Comportamento
Universidade de Brasília - UnB

Profa. Dra. Patrícia Martins de Freitas (Membro externo)
Programa de Pós-Graduação em Psicologia da Saúde Universidade Federal da Bahia - UFBA

Profa. Dra. Goiara Mendonça de Castilho (Membro Interno)
 Programa de Pós-Graduação em Ciências do Comportamento
 Universidade de Brasília - UnB

Prof. Dr. Rui de Moraes (Suplente)
Programa de Pós-Graduação em Ciências do Comportamento
Universidade de Brasília - UnB

Brasília, 17 de julho de 2023.

Agradecimentos

Gostaria de expressar minha gratidão ao meu orientador, Ricardo Moura, pela sua orientação, sabedoria e apoio contínuo ao longo deste percurso acadêmico. Seu comprometimento e conhecimento foram fundamentais para o sucesso deste projeto. Também agradeço à Universidade de Brasília e ao Programa de Pós-Graduação em Ciências do Comportamento por proporcionarem o ambiente propício para o desenvolvimento deste trabalho.

Também deixo meus sinceros agradecimentos as professoras Patrícia Martins de Freitas e Goiara Mendonça de Castilho, por gentilmente aceitarem participar da banca examinadora. Suas contribuições certamente serão fundamentais para a melhoria do estudo aqui reportado.

Agradeço aos professores e às professoras do Programa de Pós-Graduação em Ciências do Comportamento; aos servidores, aos terceirizados e aos estagiários, que atuam dentro e fora do Instituto de Psicologia, cujo trabalho é fundamental para o funcionamento da Universidade.

Por fim, concluo agradecendo a dois atores fundamentais nesses dois anos de caminhada, a CAPES e o CNPq, a quem agradeço pelo apoio financeiro, que foi muito importante para que eu conseguisse implementar meu projeto.

Sumário

Agradecimentos 5
List of Figures 7
List of Tables 8
Abstract 9
Resumo 10
Introduction 11
Method 15
Sample 15
Procedure 15
Cognitive assessment 16
Results 17
Discussion 22
References 25
Appendix A: Approval by the Research Ethics Committee 30
Appendix B: Written Informed Consents 33
Appendix C: Applied Tasks Protocol 35

List of Figures

\qquadFigure 1. Mediation model20
Figure 2. Complementary mediation model, with number ordering as predictor 21
Figure 3 . Complementary mediation model, with rote counting as predictor. 21

List of Tables

Table 1 Descriptive statistics 18
Table 2 Correlation matrix among variables 19

Abstract

Building cardinal and ordinal representations is crucial for developing a full understanding of number in the first years of education. One open question is whether, and if so, how, these two representations are involved in arithmetic computations in children. Previous research indicates a shift in the developmental course of these representations, with cardinilaty being responsible for arithmetic skills of younger children, and ordinality playing a role only after first or second grades. Here we addressed this issue by investigating cardinal and ordinal representations of number in a sample of preschool children from two public schools located in the inner city of Brasilia. Our results indicate that knowledge of numerical ordinality is associated with preschooler's addition skills even after controlling fluid intelligence and verbal skills. Moreover, we found that ordinal representations mediate the widely-reported effect of cardinality on simple addition. The present study provides evidence that already in preschool ordinal representations already have a role in basic arithmetic.

Keywords: Ordinality, Cardinal knowledge, Arithmetic Skills, Preschoolers

O papel da ordinalidade numérica na aritmética básica de pré-escolares

Suzane Garcia de Santana
Orientador: Ricardo José de Moura

Abstract

Resumo Construir representações cardinais e ordinais é crucial para desenvolver uma compreensão completa dos números nos primeiros anos de educação. Uma questão em aberto é se, e em caso afirmativo, como essas duas representações estão envolvidas em cálculos aritméticos em crianças. Pesquisas anteriores indicam uma mudança no curso do desenvolvimento dessas representações, com a cardinalidade sendo responsável pelas habilidades aritméticas das crianças mais novas, e a ordinalidade desempenhando um papel apenas após a primeira ou a segunda série. Aqui abordamos essa questão investigando representações cardinais e ordinais dos números em uma amostra de crianças em idade pré-escolar de escolas públicas da cidade de Brasília. Nossos resultados indicam que o conhecimento da ordinalidade numérica está associado às habilidades de adição de pré-escolares, mesmo após controlar a inteligência fluida e as habilidades verbais. Além disso, descobrimos que as representações ordinais mediam o efeito amplamente relatado da cardinalidade na adição simples. O presente estudo fornece evidências de que já na pré-escola as representações ordinais desempenham um papel na aritmética básica.

Palavras-chave: Ordinalidade, Cardinalidade, Conhecimento aritmético, Pré-escolares

The role of numerical ordinality on basic arithmetic in preschoolers

Introduction

The use of numerical symbols to represent quantities is one of the most important achievements of human cultures. Children start to acquire this knowledge even before formal schooling (Geary, Hoard, Nugent, \& Bailey, 2013; Watts, Duncan, Siegler, \& Davis-Kean, 2014) and throughout preschool education children learn a set of number words and Arabic digits, which acquire a quantitative meaning by means of two principles, cardinality and ordinality.

Cardinality, or the cardinal meaning of a number, refers to the numerical magnitude, or quantitative value, of a numerical symbol (Gelman \& Gallistel, 1978). For example, the quantity seven denotes the cardinal meaning of the digit "7" and the number word "seven". Children start to build their understanding of cardinality during the first years of life by the acquisition of the cardinal principle, which indicates the understanding that the last number word in a counting sequence denotes the size of a set. The cardinal principle is acquired throughout the first years of life, in steps, so that at around ages of 2 and 3 children understand the cardinality of only very small sets up to four (sub-set knowers), until they are able to represent the cardinality of any larger set (cardinal principle knowers; Wynn, 1992; Le Corre \& Carey, 2007).

As children learn the cardinal meaning of numerical symbols, the link between numerical symbol and numerical meaning becomes stronger and children access the cardinality of numbers automatically, without resorting to counting routines. In this context, cardinality is also frequently investigated by digit comparison tasks, in which participants must quickly indicate the larger or smaller of two symbolic numbers. Performance on these tasks have been used to index the strength of the association between a numerical symbol and its cardinal,
quantitative meaning (Goffin \& Ansari, 2016; Holloway \& Ansari, 2009). Understanding cardinality allows children to represent the quantitative meaning of numerical symbols and, therefore, is considered a landmark of the development of numerical reasoning, and a building block for later mathematical achievement. Research has consistently indicated that performance on digit comparison tasks is significantly associated to performance on arithmetic in adults and children with different ages (Castronovo \& Göbel, 2012; Goffin \& Ansari, 2016; Holloway \& Ansari, 2009; Landerl \& Kölle, 2009; Lyons, Price, Vaessen, Blomert, \& Ansari, 2014)

Geary, van Marle, Chu, Rouder, Hoard e Nugent (2018) investigated a series of basic numerical skills of preschoolers, including verbal counting, number naming and comparison and quantity discrimination, and showed that cardinality was the strongest predictor of mathematics achievement at the beginning of first grade. More interestingly, the age when children understand the cardinal principle was also a relevant predictor, so that an early understanding showed to be crucial to later mathematics achievement.

Ordinality is the principle that organizes numbers by their cardinal meaning in increasing and decreasing sequence so that the ordinal value of a number is its relative position. It implies the understanding that numerical symbols hold not only a cardinal meaning but also a quantitative relationship with each other. That is, each number N is preceded by the cardinal $\mathrm{N}-1$ and succeeded by the cardinal $\mathrm{N}+1$. Therefore, while cardinality refers to individual representations of numbers, ordinality refers to representations based on a number-to-number, symbol-to-symbol mapping.

Evidence suggests that the cardinality is a prerequisite to understand ordinality (Cheung, Rubenson, \& Barner, 2017; Sarnecka \& Carey, 2008; Spaepen, Gunderson, Gibson, GoldinMeadow, \& Levine, 2018). Sarnecka and Carey (2008) showed that only children who understand the cardinal principle can understand the concepts of successor and predecessor, which define that the symbol for the cardinal N comes before the one for the cardinal $\mathrm{N}+1$ and
after the one for the cardinal N-1. Spaepen and collaborators (2018) further elucidate this issue by investigating a sample of children with different levels of cardinality knowledge, but similar understanding of ordinality. Their results revealed that cardinal-principle knowers benefit more from practicing ordinality, thus suggesting that children understand ordinality after they understand cardinality. Finally, Cheung, Rubenson and Barner (2017) tested children's ability to infer the successors of numbers in their counting list and the knowledge that all numbers have a successor. The results suggest that the acquisition of the successor function may be influenced by the cardinal principle.

The link between ordinality and math achievement has been investigated in more detail in the last few years. There is a consistent body of evidence indicating an association between number ordering skills and mathematics achievement in both children (Finke et al., 2022; Lyons, Price, Vaessen, Blomert, \& Ansari, 2014; Lyons \& Ansari, 2015; Malone, Pritchard, \& Hulme, 2021; Sasanguie \& Vos, 2018) and adults (Goffin \& Ansari, 2016; Lyons \& Beilock 2011; Morsanyi, O'Mahony, \& McCormack, 2017; Sasanguie, Lyons, De Smedt \& Reynvoet, 2017; Vogel, Haigh, Sommerauer, Spindler, Brunner, Lyons, \& Grabner, 2017). Moreover, number ordering deficits in children identified with developmental dyscalculia have also been reported (Attout \& Majerus, 2014).

The relationship between ordinality and math achievement, despite documented in the literature, needs further elucidation in at least two aspects. The first concerns the temporal course of this relationship. As stated above, the idea of the development of cardinality preceding the development of ordinality is thought to be reflected in the temporal course of the association between these two skills and mathematics achievement, and current evidence suggests an earlier role of cardinality. Lyons and colleagues (2014) showed, in a cross-sectional design, that from the first to the second grades of elementary school, mathematics achievement is better explained by numerical tasks that tap on cardinal knowledge, such as Arabic number comparison.

Cardinality was the best predictor of mathematics in first and second grades, and still a significant predictor in the third grade. Ordinality, in turn, was not a significant predictor during the first two school grades but presented as a significant predictor in the third grade until the sixth grade, when it was the best predictor. An overall similar pattern of a shift from cardinality to ordinality was also found by Sasanguie and Vos (2018), who reported a significant effect of cardinality on mathematics achievement in first graders, but not on second graders, when mathematics is significantly associated with ordinality. More recently, Finke et al. (2022) found similar results in first and second graders but using a longitudinal design.

The second issue is the nature of the association between ordinality and mathematics. One important hypothesis state that calculation relies on the retrieval of symbol-to-symbol, ordinal, associations stored in long-term memory (Finke et al., 2022; Sasanguie \& Vos, 2018; Vogel et al., 2019). Adults and more experienced children are known to base their performance on calculation tasks in retrieval (fast) rather than procedural (slow) strategies, and therefore the association between ordinal processing and arithmetic performance would be observed in these populations.

It should also be noted that Vogel et al. (2019) found a significant association between arithmetic performance of adults and conscious, controlled, processing of ordinality, but found no association when investigating automatic access to ordinal representations. It is also important to note that most studies investigating the association between ordinal processing and arithmetic are based on ordinal judgment tasks in which participants must quickly decide whether a number triplet is ordered or not. It can be argued that at least part of the association between arithmetic performance and ordinal representations can be explained by the nature of the tasks used to measure ordinality. These issues leave open space for an association between arithmetic and the quality of ordinal representations, but not exclusively the efficiency in accessing these representations, and for observing this association in younger children. In the
present study we aim to investigate these open questions.

Method

The study was approved by the Ethics Committee for Research (CEP-UnB) at the University of Brasília.

Sample

Sixty-four children (32 girls, age range $=4-6$ years, $M=67.30$ months, $S D=3.98$ months) from two public schools located in the inner city of Brasília (Federal District, Brazil) participated in the present study after informed consent from parents or legal guardians. All children were assessed during the first half of the school year (February to June) in quiet rooms provided by the school board. Data collection occurred individually for all cognitive measures. Socioeconomic data was obtained by Brazilian Economic Classification Criteria answered by children's parents (ABEP, 2018) and revealed a prevalence of middle-class families (69% of B 2 and C 1 classes).

It is important to note that the data reported here are part of a larger data set, that will be reported in future work.

Procedure

Participants were tested individually in two sessions, each lasting approximately 50 minutes, with a one-day interval between them. Order was counterbalanced across participants. As we did not find order effects, we will ignore this factor later. The schools provided written notification of the purpose and nature of the data collection procedures to parents. Before each task, participants were given 1-3 practice trials, except for the route counting task. During the main trials, no feedback was given for any of the tasks.

Cognitive assessment

Intelligence. Fluid intelligence was assessed using the Brazilian version of the Raven's Coloured Progressive Matrices (Raven, Court \& Raven, 1990). The number of correct responses was recorded and converted to z-scores based on Brazilian norms (Paula, Schlottfeldt, Malloy-Diniz, \& Mizuta, 2018).

Simple addition. In this task children had to solve 21 simple addition problems. The sum $1+1$ was used as an example and illustrated with adding two plastic apples. In this moment, the experimenter encouraged children to solve the sum using the fingers. In the first 10 items the sum was up to 5 , and in following items sums were always between 6 and 10 . In the test items no illustration was given. The internal consistency of this task is considered satisfactory $($ Kuder-Richardson $=0.88)$.

Comparison of symbolic and nonsymbolic magnitudes. In the numeracy screener test (Nosworthy, Bugden, Archibald, Evans, \& Ansari, 2013) participants were required to compare pairs of numerical magnitudes presented in a printed booklet. Stimuli in the symbolic part are Arabic numerals, while in the nonsymbolic part stimuli are arrays of dots. Both parts were composed by 56 items with magnitudes varying from 1 to 9 , and children were required to cross the larger magnitude in the pair for each item. The task is time constrained, with a limit of 2 minutes. The score for both parts is the total of correct responses given during the time interval. The order of the presentation of symbolic and nonsymbolic parts was counterbalanced between participants.

Number ordering. Children were asked to say the successor and predecessor of an orally presented number. To ensure the child understands the concept of successor and predecessor, examples were given using the vowels of the alphabet. Targets comprised 2 onedigit numbers, 3 two-digit numbers and 1 three-digit number. One point was assigned to each correct answer, so that the maximum score is 12 (Kuder-Richardson $=0.89$).

Rote counting. Children were asked to count aloud from one, and testing was stopped after a mistake or reaching the number 40 . The experimenter asked each child, "Can you count as high as you can?". If the child interrupted the counting, they were encouraged to continue.

The child's highest count was determined as the largest number reached before an error or repetition occurred. Highest number reached was reported as the task score. If the child interrupted the counting, they were encouraged to continue.

Counting. Counting was assessed by the Give-me N task, based on Wynn (1992) and Sarnecka and Carey (2008). In the task children were presented with a teddy bear that should be fed toy apples. To feed the bear, the children should put the number of apples requested by the applicators in a small basket and then give it to the bear. The applicators started the task by asking for 1 and then 3 apples and then proceeded by increasing one unit until 8. To assess the child's consistency in answers, $\mathrm{N}+1$ was asked for each correct answer and $\mathrm{N}-1$ for each error. The task continued until the child obtained 2 correct answers in the same number N , and two errors in $\mathrm{N}+1$, or until you reach number 8 .

Rhyme detection task. In the rhyme detection task children were presented to a target word and instructed to indicate which, among two other words, rhymes with the target. All three words in each were substantives and were illustrated with pictures in a single page. There were 30 items in total, and each correct answer were scored with one. The task internal consistence is satisfactory (Kuder-Richardson $=0.85$).

Results

Seven Statistical analyses reported here were run using the base library of the software R (R Core Team, 2022) and the package PROCESS for bootstrapped mediation analyses (Hayes, 2013). Table 1 shows descriptive statistics for age and all cognitive measures.

Table 1

Descriptive statistics.

	Mean	SD	Min	Max
Age	$67.3 \mathrm{~m}(5 \mathrm{y} 07 \mathrm{~m})$	3.98 m	$59 \mathrm{~m}(4 \mathrm{y} 11 \mathrm{~m})$	$73 \mathrm{~m}(6 \mathrm{y} 01 \mathrm{~m})$
Raven (z score)	-0.15	0.73	-1.88	1.52
Simple addition	8.98	5.07	0	21
Numeracy Screener - Symbolic	29.33	12.23	8	56
Numeracy Screener - Nonsymbolic	36.71	8.19	8	52
Number ordering	3.28	3.55	0	12
Rote Counting	22.01	11.25	3	40
Give-me N (maximum)	6.47	2.17	2	8
Rhyme detection	21.63	5.73	12	30

First, the correlations between all variables were investigated, focusing on the correlations the simple addition task held with all other measures (Table 2). Interestingly, scores in addition correlated significantly with all other tasks, including the non-numerical Rhyme detection, with coefficients varying from moderate (lowest: 0.30 , with nonsymbolic comparison and 0.39 , with Rhyme detection) to high (highest: 0.74 , with number ordering and 0.63 with rote counting).

Table 2

Correlation matrix among variables

	1	2	3	4	5	6	7	8	9
1. Simple addition	1								
2. Age	. $31{ }^{*}$	1							
3. Raven (z score)	. $47^{* * *}$. 18	1						
4. Numeracy Screener Symbolic	. $58{ }^{* * *}$. 29^{*}	. $38^{* *}$	1					
5. Numeracy Screener Nonsymbolic	. 30 *	. 17	. $37^{* *}$. $64^{* * *}$	1				
6. Number ordering	. $74^{* * *}$. 19	. 29 *	. $49^{* * *}$. 25 *	1			
7. Rote Counting	. $63^{* * *}$. $26{ }^{*}$. 25 *	. 40 **	. $33^{* *}$. $59{ }^{* * *}$	1		
8. Give-me N (maximum)	. $54^{* * *}$. 29^{*}	. $34^{* *}$. $54{ }^{* * *}$. $33^{* *}$. $41^{* *}$. $59{ }^{* * *}$	1	
9. Rhyme detection	. $39^{* *}$. 12	. 09	. $43^{* * *}$. 12	. $47 * *$. $34^{* *}$. 42 **	1

Second, to better understand how each variable contributed to the performance on addition, a hierarchical regression model was run. In the first step of the regression, intelligence (Raven's z scores) and age (in months) were included in the model using the enter method, and in the second step all other variables, except Nonsymbolic comparison, were included using the stepwise method. Nonsymbolic comparison was not included because while it is highly correlated $(\mathrm{r}=.64)$ with symbolic comparison (also from the numeracy screener test), it has the lowest correlation with addition $(r=.30)$. The result indicated that 66.3% of the variance in simple addition was predicted by the model ($\mathrm{F}=31.97, \mathrm{p}<.001$, adjusted $\mathrm{R} 2=.66$), with number ordering $(b=.50)$, intelligence $(b=.26)$, and rote counting $(b=.24)$ as the three significant predictors.

Finally, to disentangle the effect of symbolic number comparison on arithmetic, we defined a mediation model including as parallel mediators the two numerical predictors of the regression model previously reported, that is, number ordering and rote counting. Again, age and intelligence were defined as covariates in the model. The results revealed a significant model with the effect of numerical comparison on simple addition being fully mediated by numerical ordinality. As shown in Figure 1, the direct path (c) from number comparison to simple addition is significant. When the mediators are included in the model, however, the path from number comparison to addition (now c') is no longer significant while the indirect path via mediators (a * b paths) reveal significance, thus characterizing a full mediation.

Figure 1

Mediation model

To further validate the mediation previously reported, ensuring the role of number ordering skills as mediators, we tested two similar mediation models but defining number comparison as mediator and number ordering and rote counting as predictors, separately. Results revealed two significant models with partial mediations, and with no significant indirect effect of neither number ordering nor rote counting mediated by numerical comparison (Figures 2 and 3 display path statistics).

Figure 2
Complementary mediation model, with number ordering as predictor

Figure 3
Complementary mediation model, with rote counting as predictor

Discussion

In the current study we investigated the relationship among numerical ordinality, cardinality and performance in addition. Our results extended previous research by revealing that numerical ordinality is consistently associated with addition even in younger children, during preschool. Also, we showed that this relationship is independent of nonnumerical factors such as fluid intelligence and verbal skills. Finally, by disentangling the relationship among numerical ordinality, cardinality and performance on addition, our results indicate that ordinality works as a mediator, linking numerical cardinality to performance on addition.

The association between the processing of the cardinal and ordinal dimensions of number and arithmetic performance has been reported for a wide range of ages (Holloway \& Ansari, 2009; Landerl \& Kölle, 2009; Lyons et al., 2014). Here we provided evidence that already in preschool children resort to these numerical representations to solve basic addition problems.

Previous evidence suggests a shift from cardinality to ordinality as the cognitive bases for arithmetic skills (Lyons et al., 2014; Sasanguie \& Vos, 2018), with the turning point at around the second grade. From this time on, the role of ordinality becomes increasingly stronger. One important working hypothesis of these studies is that this shift reflects a change in the cognitive strategy employed to solve arithmetic problems, with cardinality associated to procedural knowledge, beginning with digit identification, followed by accessing and comparing their respective cardinal meaning. Ordinality, as measured by judging the ordinality of digit sequences, reflects, in turn, the retrieval of ordinal representations from long-term memory. This hypothesis, together with the evidence for a cardinality-to-ordinality shift, is in line with the idea that experience leads to a progressive storage of mathematical knowledge as declarative memory (Campbell, 1995; Chen \& Campbell, 2018).

Our current results are in line with previous studies since we confirm the general hypothesis of numerical ordinal representations as relevant to perform arithmetic. Nonetheless, here we contradict the before mentioned research by showing that ordinal representations are associated with arithmetic performance already in preschoolers. More specifically, our results indicate that the relationship between cardinality and arithmetic, in preschoolers, is fully mediated by ordinality.

Why did we find an earlier effect of ordinal representations, while previous studies suggested earlier involvement of cardinality, followed by ordinality? One important difference between the current and previous studies is how ordinality was measured. As mentioned before, the studies that reported a cardinality-ordinality shift measured ordinality by means of computerized tasks in which participants had to judge the order of numerical pairs (Sasanguie \& Vos, 2018) or triplets (Lyons et al., 2014). These are time-based tasks that require participants to make fast judgments, therefore, performance reflects not only the ordinal representation per se, but also the speed of their retrieval from long-term memory. It can be hypothesized that the later effect of ordinality on arithmetic, reported in previous studies, is due to the nature of the ordinal judgment tasks, which are based on fast retrieval from long-term memory. Further research should, however, directly compare both tasks to solve this issue.

Here we used a simpler ordinality tasks that assessed basic conceptual knowledge of ordinality, specifically the verbal numerical sequence, and the knowledge of predecessor and successor numbers. Our results reveal that basic arithmetic demands accessing not only cardinal but also conceptual ordinal representations. In fact, there is evidence that a conceptual understanding of numerical ordinal relations between numbers succeeds the understanding of cardinality and contribute to build a full understanding of numerical meaning (Sella, Lucangeli, Cohen Kadosh, \& Zorzi, 2020; Spaepen, Gunderson, Gibson, Goldin-Meadow, \& Levine, 2018). It can be argued that slow, algorithm-based, strategies employed by young students when
solving basic arithmetic also resort to ordinal knowledge. For example, when asked to solve simple problems like $4+2$, children often employ counting routines that tap on processing ordinal information, such as first setting and counting the larger number and then counting the smaller number starting from the last pronounced number (Groen \& Parkman, 1972; Thevenot, Barrouillet, Castel, \& Uittenhove, 2016). Therefore, besides accessing the cardinality of each operand, counting the second operand after counting the first operando also demand accessing ordinal relations between the numbers in the counting list.

References

ABEP: Associação Brasileira de Empresa de Pesquisa. (2018). Critério de Classificação Econômica Brasil (CCEB). São Paulo: ABEP. http://www.abep.org/criterio-brasil

Attout, L., Noël, M. P., \& Majerus, S. (2014). The relationship between working memory for serial order and numerical development: a longitudinal study. Developmental psychology, 50(6), 1667-1679.

Barrouillet, P., Camos, V., Perruchet, P., \& Seron, X. (2004). ADAPT: A developmental, asemantic, and procedural model for transcoding from verbal to Arabic numerals. Psychological Review, 111, 368-394.

Campbell, J. I. D. (1995). Mechanisms of single addition and multiplication: A modified network-interference theory and simulation. Mathematical Cognition, 1(2), 121-164.

Castronovo, J., \& Göbel, S. M. (2012). Impact of high mathematics education on the number sense. PloS one, 7(4), e33832.

Chen, Y., \& Campbell, J. I. D. (2018). "Compacted" procedures for adults' simple addition: A review and critique of the evidence. Psychonomic Bulletin \& Review, 25(2), 739-753. https://doi.org/10.3758/s13423-017-1328-2

Cheung, P., Rubenson, M., \& Barner, D. (2017). To infinity and beyond: Children generalize the successor function to all possible numbers years after learning to count. Cognitive Psychology, 92, 22-36. https://doi.org/10.1016/j.cogpsych.2016.11.002

Finke, S., Vogel, S. E., Freudenthaler, H. H., Banfi, C., Steiner, A. F., Kemény, F., Göbel, S., \& Landerl, K. (2022). Developmental trajectories of symbolic magnitude and order processing and their relation with arithmetic development. Cognitive Development, 64. https://doi.org/10.1016/j.cogdev.2022.101266

Geary, D. C., Hoard, M. K., Nugent, L., \& Bailey, D. H. (2013). Adolescents' functional numeracy is predicted by their school entry number system knowledge. PLoS ONE, 8, e54651.

Geary, D. C., \& van Marle, K. (2016). Young children's core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement. Developmental Psychology, 52(12), 2130-2144. https://doi.org/10.1037/dev0000214

Geary, D. C., van Marle, K., Chu, F. W., Rouder, J., Hoard, M. K., \& Nugent, L. (2018). Early Conceptual Understanding of Cardinality Predicts Superior School-Entry Number-System Knowledge. Psychological Science, 29(2), 191-205. https://doi.org/10.1177/0956797617729817

Gelman, R., \& Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA: Harvard University Press.

Goffin, C., \& Ansari, D. (2016). Beyond magnitude: Judging ordinality of symbolic number is unrelated to magnitude comparison and independently relates to individual differences in arithmetic. Cognition, 150, 68-76.

Groen, G. J., \& Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79, 329-343.

Holloway, I. D., \& Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29. https://doi.org/10.1016/j.jecp.2008.04.001

Landerl, K., \& Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103, 546-565.

Le Corre, M., \& Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105(2), 395-438.

Long, I., Malone, S. A., Tolan, G. A., Burgoyne, K., Heron-Delaney, M., Witteveen, K., \& Hulme, C. (2016). The cognitive foundations of early arithmetic skills: It is counting and number judgment, but not finger gnosis, that count. Journal of Experimental Child Psychology, 152, 327-334. https://doi.org/10.1016/j.jecp.2016.08.005

Lyons, I. M., \& Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256-261.

Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., \& Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental science, 17(5), 714-726.

Lyons, I.M., Ansari, D. (2015). Numerical order processing in children: from reversing the distance-effect to predicting arithmetic. Mind Brain Educ. 9 (4), 207-221.

Lyons, I. M., Bugden, S., Zheng, S., De Jesus, S., \& Ansari, D. (2018). Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners. Developmental Psychology, 54(3), 440-457.

Malone, S. A., Pritchard, V. E., \& Hulme, C. (2021). Separable effects of the approximate number system, symbolic number knowledge, and number ordering ability on early arithmetic development. Journal of Experimental Child Psychology, 208, 105120..

Moura, R., Lopes-Silva, J. B., Vieira, L. R., Paiva, G. M., Prado, A. C. D. A., Wood, G., \& Haase, V. G. (2015). From "five" to 5 for 5 minutes: Arabic number transcoding as a short, specific, and sensitive screening tool for mathematics learning difficulties. Archives of Clinical Neuropsychology, 30(1), 88-98.

Morsanyi, K., O'Mahony, E., \& McCormack, T. (2017). Number comparison and number ordering as predictors of arithmetic performance in adults: Exploring the link between the two skills, and investigating the question of domain-specificity. Quarterly Journal of Experimental Psychology, 70(12), 2497-2517.

Nosworthy, N., Bugden, S., Archibald, L., Evans, B., \& Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children's arithmetic competence. PloS one, 8(7), e67918.

Paula, J. J., Schlottfeldt, C. G. M. F., Malloy-Diniz, L. F., \& Mizuta, G. A. A. (2018). Matrizes Progressivas de Raven: Adaptação brasileira. Pearson Clinical Brasil.

Raven, J. C., Court, J.H. \& Raven, J.C. (1990). Manual for Raven's Progressive Matrices and Vocabulary Scales - Section 2: Coloured Progressive Matrices. Oxford: Oxford Psychologists Press.

Pixner, S., Dresen, V., \& Moeller, K. (2018). Differential development of children’s understanding of the cardinality of small numbers and zero. Frontiers in Psychology, 9, 1636.

Sarnecka, B. W., and Carey, S. (2008). How counting represents number: what children must learn and when they learn it. Cognition, 108, 662-674. doi: 10.1016/j.cognition.2008.05.007

Sasanguie, D., Lyons, I. M., De Smedt, B., \& Reynvoet, B. (2017). Unpacking symbolic number comparison and its relation with arithmetic in adults. Cognition, 165, 26-38. https://doi.org/10.1016/j.cognition.2017.04.007

Sasanguie, D. \& Vos, H. (2018). About why there is a shift from cardinal to ordinal processing in the association with arithmetic between first and second grade. Developmental Science, e12653.

Sella, F., Lucangeli, D., Cohen Kadosh, R., \& Zorzi, M. (2020). Making Sense of Number Words and Arabic Digits: Does Order Count More?. Child development, 91(5), 14561470.

Spaepen, E., Gunderson, E. A., Gibson, D., Goldin-Meadow, S., \& Levine, S. C. (2018). Meaning before order: Cardinal principle knowledge predicts improvement in understanding the successor principle and exact ordering. Cognition, 180, 59-81.

Thevenot, C., Barrouillet, P., Castel, C., \& Uittenhove, K. (2016). Ten-year-old children strategies in mental addition: A counting model account. Cognition, 146, 48-57.

Vogel, S. E., Haigh, T., Sommerauer, G., Spindler, M., Brunner, C., Lyons, I. M., \& Grabner, R. H. (2017). Processing the order of symbolic numbers: A reliable and unique predictor of arithmetic fluency. Journal of Numerical Cognition, 3(2), 288-308.

Vogel, S. E., Koren, N., Falb, S., Haselwander, M., Spradley, A., Schadenbauer, P., Tanzmeister, S., \& Grabner, R. H. (2019). Automatic and intentional processing of numerical order and its relationship to arithmetic performance. Acta Psychologica, 193, 30-41. https://doi.org/10.1016/j.actpsy.2018.12.001

Watts, T. W., Duncan, G. J., Siegler, R. S., \& Davis-Kean, P. E. (2014). What's Past Is Prologue: Relations Between Early Mathematics Knowledge and High School Achievement. Educational Researcher, 43(7), 352-360. https://doi.org/10.3102/0013189X14553660

Wynn, K. (1992). Children's acquisition of number words and the counting system. Cognitive Psychology, 24, 220-251.

Appendix A: Approval by the Research Ethics Committee

INSTITUTO DE CIÊNCIAS
 HUMANAS E SOCIAIS DA Platoforma UNIVERSIDADE DE BRASÍLIA UNB

PARECER CONSUBSTANCIADO DO CEP

DADOS DA EMENDA

Título da Pesquisa: Habilidades numéricas básicas em crianças e seu papel como preditores do desempenho na matemática: um estudo longitudinal.
Pesquisador: Ricardo Moura
Área Temática:
Versão: 4
CAAE: 02345418.6.0000.5540
Instituição Proponente: Instituto de Psicologia -UNB
Patrocinador Principal: Financiamento Próprio

DADOS DO PARECER

Número do Parecer: 6.035.670
Apresentação do Projeto:
Inalterado em relação ao parecer consubstanciado emitido pelo CEP/CHS no dia 27 de janeiro de 2023.

Objetivo da Pesquisa:

Inalterado em relação ao parecer consubstanciado emitido pelo CEP/CHS no dia 27 de janeiro de 2023.

Avaliação dos Riscos e Benefícios:

Inalterado em relação ao parecer consubstanciado emitido pelo CEP/CHS no dia 27 de janeiro de 2023.

Comentários e Considerações sobre a Pesquisa:

Inalterado em relação ao parecer consubstanciado emitido pelo CEP/CHS no dia 27 de janeiro de 2023.

Considerações sobre os Termos de apresentação obrigatória:

Inalterado em relação ao parecer consubstanciado emitido pelo CEP/CHS no dia 27 de janeiro de 2023.

Conclusões ou Pendências e Lista de Inadequações:

Considerando o pedido de emenda apresentado ao Comitê de Ética e Pesquisa das Ciências

```
Endereço: CAMPUS UNIVERSITÁRIO DARCY RIBEIRO - FACULDADE DE DIREITO - SALA BT-01/2 - Horário de
Bairro: ASA NORTE
    CEP: 70.910-900
UF: DF Município: BRASILIA
Telefone: (61)3107-1592 E-mail: cep_chs@unb.br
```


INSTITUTO DE CIÊNCIAS
 HUMANAS E SOCIAIS DA UNIVERSIDADE DE BRASÍLIA UNB

Continuação do Parecer: 6.035.670

Humanas e Sociais (CEP/CHS), entendo que as alterações propostas são pertinentes e não afetam a integridade ética da pesquisa. A mudança no título do projeto não altera o seu objetivo geral e mantém o foco na investigação das habilidades numéricas em crianças e seu papel como preditores do desempenho na matemática. O novo cronograma é mais adequado à proposta inicial e permite a coleta de dados de préescolares, o que é importante para o desenvolvimento do estudo longitudinal. Além disso, a justificativa apresentada pelo pesquisador é clara e coerente com as alterações propostas. Portanto, recomendo a aprovação da emenda ao projeto de pesquisa intitulado "Habilidades numéricas básicas em crianças préescolares e seu papel como preditores do desempenho na matemática: um estudo longitudinal" (CAAE: 02345418.6.0000.5540).

Considerações Finais a critério do CEP:

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento	Arquivo	Postagem	Autor	Situação
Informações Básicas do Projeto	PB_INFORMAÇÕES_BÁSICAS_210530 8_E2.pdf	$\begin{gathered} \hline 16 / 03 / 2023 \\ 10: 58: 04 \\ \hline \end{gathered}$		Aceito
Cronograma	Cronograma2023.pdf	$\begin{gathered} \hline 16 / 03 / 2023 \\ 10: 57: 04 \\ \hline \end{gathered}$	Ricardo Moura	Aceito
Outros	EMENDA2023.pdf	$\begin{gathered} 16 / 03 / 2023 \\ 10: 55: 40 \\ \hline \end{gathered}$	Ricardo Moura	Aceito
TCLE / Termos de Assentimento / Justificativa de Ausência	tcle2023.pdf	$\begin{gathered} \text { 20/12/2022 } \\ \text { 17:54:08 } \end{gathered}$	Ricardo Moura	Aceito
Projeto Detalhado / Brochura Investigador	Projeto_preditores_MAT_COEP_NOVO. pdf pdf	$\begin{gathered} \hline \text { 28/11/2018 } \\ \text { 19:25:53 } \end{gathered}$	Ricardo Moura	Aceito
Outros	carta_aceite_instituicao_galois.pdf	$\begin{gathered} \hline 28 / 11 / 2018 \\ 19: 25: 25 \\ \hline \end{gathered}$	Ricardo Moura	Aceito
TCLE / Termos de Assentimento / Justificativa de Ausência	TCLE_novo.pdf	$\begin{gathered} \hline \text { 28/11/2018 } 19: 23: 24 \end{gathered}$	Ricardo Moura	Aceito
Outros	carta_revisao_etica.pdf	$\begin{gathered} \hline 05 / 11 / 2018 \\ 16: 34: 27 \\ \hline \end{gathered}$	Ricardo Moura	Aceito
Outros	carta_encaminhamento.pdf	$\begin{gathered} \hline 05 / 11 / 2018 \\ 16: 33: 31 \end{gathered}$	Ricardo Moura	Aceito
Outros	Lattes_Suzane_Garcia.pdf	$\begin{gathered} \hline 05 / 11 / 2018 \\ 16: 24: 57 \\ \hline \end{gathered}$	Ricardo Moura	Aceito
Outros	Lattes_Ricardo_Moura.pdf	05/11/2018	Ricardo Moura	Aceito

[^0]
INSTITUTO DE CIÊNCIAS
 HUMANAS E SOCIAIS DA UNIVERSIDADE DE BRASÍLIA -
 UNB

Continuação do Parecer: 6.035.670

Outros	Lattes_Ricardo_Moura.pdf	$16: 24: 09$	Ricardo Moura	Aceito
Outros	instrumentos_pesquisa.pdf	$05 / 11 / 2018$	Ricardo Moura	Aceito
		$16: 23: 08$		
Outros	Aceites_SES_e_Escola_assinados.pdf	$05 / 11 / 2018$	Ricardo Moura	Aceito
Folha de Rosto	Folha_de_rosto_assinada.pdf	$05 / 11 / 2018$	Ricardo Moura	Aceito

Situação do Parecer

Aprovado
Necessita Apreciação da CONEP:
Não
BRASILIA, 02 de Maio de 2023

Assinado por:
ANDRE VON BORRIES LOPES
(Coordenador(a))

[^1]
Appendix B: Written Informed Consents

Termo de Consentimento Livre e Esclarecido para Pais ou Responsáveis

Prezado pai ou responsável, você e sua criança estão sendo convidados a participar da pesquisa"Habilidades numéricas básicas em crianças pré-escolares e seu papel como preditores do desempenho na matemática: um estudo longitudinal", de responsabilidade de Ricardo Moura, professor adjunto do Departamento de Processos Psicológicos Básicos (Instituto de Psicologia da UnB). O objetivo da pesquisa éinvestigar o papel das habilidades numéricas básicas como preditores do desempenho na matemática em crianças da rede de ensino pública e privada de Brasília (DF).

Você receberá todos os esclarecimentos necessários antes, durante e após a finalização da pesquisa, e lhe asseguro que o seu nome ou o nome da criança não serão divulgados, mantendo o mais rigoroso sigilo sobre as informações que permitam identificá-los. Os dados provenientes da participação da criança na pesquisa ficarão sob a guarda do pesquisador responsável em um laboratório da Universidade de Brasília (DF). A equipe de pesquisa garante que os mesmos lhe serão devolvidos individualmente por meio de relatórios técnicos. É importante ressaltar que a pesquisa não possui caráter clínico, e os dados obtidos não permitirão a formulação de nenhuma espécie de diagnóstico ou treinamento cognitivo.

A coleta de dados será feita através de testes computadorizados e de lápis e papel, os quais envolvem atividades numéricas e de resolução de problemas, semelhantes a atividades que as crianças já realizam na escola, além de questionários que serão respondidos pelos pais ou responsáveis. Os participantes serão avaliados em três momentos, uma vez por ano. A primeira vez será no último ano do ensino infantil, a segunda no primeiro ano do ensino fundamental, e a terceira no segundo ano do ensino fundamental. Por razões metodológicas aqueles que não participarem da primeira etapa do projeto não poderão participar das demais etapas.

A participação na pesquisa não implica em nenhum risco, além de cansaço decorrente da testagem, e é voluntária, ou seja, livre de qualquer compromisso financeiro. A recusa em participar não irá acarretar qualquer penalidade ou perda de benefícios. As crianças participantes e seus responsáveis legais são livres para recusarem a participação ou retirar seu consentimento a qualquer momento, mesmo que a criança já tenha participado de alguma etapa da pesquisa. Nos dias de coleta de dados, os participantes que manifestarem desejo de permanecer em sala de aula serão chamados novamente em outra data para realizarem as atividades da pesquisa.

Esperamos, após a pesquisa, elaborar ferramentas de avaliação e estabelecer indicadores cognitivos das habilidades numéricas básicas. Eventuais efeitos de variáveis socioeconômicas, como escolaridade dos pais, renda familiar, e índice de qualidade da escola, poderão ser discutidos com autoridades educacionais e políticas a fim de promover o uso de informação científica na formulação de políticas públicas.

Este projeto foi revisado e aprovado pelo Comitê de Ética em Pesquisa em Ciências Humanas e Sociais (CEP/CHS) da Universidade de Brasília. As informações com relação à assinatura do TCLE ou aos direitos do participante da pesquisa podem ser obtidas por meio do e-mail do CEP/CHS: cep_chs@unb.br. Se você tiver qualquer dúvida em relação à pesquisa,
você também pode contatar o pesquisador responsável através do telefone $613107-6852$ ou pelo e-mail ricardomoura@unb.br.

Este documento foi elaborado em duas vias, uma ficará com o(a) pesquisador(a) responsável pela pesquisa e a outra com o senhor(a).
Baseado neste termo, eu abaixo assinado, responsável pela criança ", aceito a sua participação voluntáia na pesquisa "Habilidades numéricas básicas em crianças pré-escolares e seu papel como preditores do desempenho na matemática: um estudo longitudinal", em acordo com as informações acima expostas.

Assinatura do responsável

Ricardo Moura
Professor Adjunto, coordenador da pesquisa
Departamento de processos Psicológicos Básicos - UnB
Brasília, \qquad 1.1

Appendix C: Applied Tasks Protocol

FOLHA DE RESPOSTA

FOLHA DE RESPOSTA	
Nome:	
Data Nascimento: ___	Idade:
Sexo: $\square \mathbf{F} \quad \square \mathbf{M}$	Ano/Série:___
Escola:	\square Pública \square Particular
1² Data Aplicação: ___ _/_	$2{ }^{\text {a }}$ Data Aplicação: _____
Aplicador:	Sequência: 1

1) Numeracy Screener (FORM A B)

- Tempo máximo: 2 minutos. Caso a criança termine antes, anotar o tempo gasto (total em segundos).
- Sample items: o aplicador demonstra como se faz. Practice items: a criança responde.
- Parte não-simbólica: instruir a criança a não tentar contar as bolinhas.
- Não é permitido apagar. Caso a criança erre, instruir a fazer um X na resposta errada e o traço na correta.

	Parte Simbólica	Parte Não-simbólica
Tempo de Execução		
Acertos		

Qual mão foi utilizada? Direita Esquerda

2) Stroop dia-noite

- Apresentar primeiro os cartões de treino perguntando o que está desenhando em cada um deles.
- Fazer primeiro a condição neutra: pedir para a criança dizer "dia" para o cartão do sol, e "noite" para o cartão da lua.
- Em seguida fazer a condição stroop: pedir para dizer "dia" para o cartão da lua e "noite" para o cartão do sol.
- Alertar a criança para não pular nenhuma imagem. Sugerir que ela acompanhe com o dedo.
- Marcar erros com um risco e autocorrigidos com dois riscos.

Condição neutra (riscar os itens em que a criança cometeu erro):

\mathbf{D}	\mathbf{N}	\mathbf{D}	\mathbf{N}	\mathbf{N}	\mathbf{D}	\mathbf{N}	\mathbf{D}	\mathbf{D}	\mathbf{N}	\mathbf{N}	\mathbf{D}	\mathbf{N}	\mathbf{D}	\mathbf{D}	\mathbf{N}

Tempo total (segundos, milésimos de segundo): \qquad
Condição stroop (riscar os itens em que a criança cometeu erro):

\mathbf{D}	\mathbf{N}	\mathbf{N}	\mathbf{D}	\mathbf{N}	\mathbf{D}	\mathbf{D}	\mathbf{N}	\mathbf{N}	\mathbf{D}	\mathbf{N}	\mathbf{D}	\mathbf{D}	\mathbf{N}	\mathbf{D}	\mathbf{N}

Tempo total (segundos, milésimos de segundo): \qquad

3) Ordenação de números

- Apresentar cada número em voz alta e pedir para a criança dizer o número que vem antes / está atrás.
- Após a resposta, perguntar qual número vem depois / está na frente.
- Incentivar a criança a responder todos os itens.
- Usar como exemplo: A - B - C (o B vem depois do A, e antes do C). Escrever no verso da folha.

Item	Número	$\mathbf{N}-\mathbf{1}$	$\mathbf{N + 1}$	Escore	Item	Número	$\mathbf{N}-\mathbf{1}$	$\mathbf{N + 1}$	Escore
$\mathbf{1}$	3				$\mathbf{4}$	16			
$\mathbf{2}$	7				$\mathbf{5}$	25			
$\mathbf{3}$	12				$\mathbf{6}$	104			

Escore total: \qquad

4) Velocidade de recitação

- Pedir pra criança contar de 1 até 10 , o mais rápido que puder. Após terminar, pedir para fazer mais uma vez.
- Pedir pra contar de 10 até 1 , o mais rápido que puder, também duas vezes. (se não entender, usar 10 - como exemplo)
- Anotar o tempo!

Ordem direta $(\mathbf{1} \rightarrow \mathbf{1 0})$		Ordem inversa $(\mathbf{1 0} \rightarrow \mathbf{1})$	
$1^{\text {a. }}:$	$2^{\text {a }}:$	$1^{\text {a. }}:$	$2^{\text {a }}:$

5) Tarefa de contagem até o maior número

- A criança deve contar até o maior número que puder (interromper quando a criança chegar no 40 , ou cometer um erro).
- Caso a criança interrompa a contagem, pedir para continuar.

Último número correto: \qquad

6) Give-me \mathbf{N}

- Começar sempre pedindo 1, e depois 3.
- Em caso de erro, pedir $\mathrm{N}-1$, e em caso de acerto, pedir $\mathrm{N}+1$.
- Os pedidos continuam até a criança ter 2 acertos em um mesmo número N , e dois erros em $\mathrm{N}+1$, ou até alcançar o 8 .
- Após terminar a sequência, pedir 0 maçãs.

Número N	Acerto	
1		
2		
3		
4		

Número N	Acerto		
5			
6			
7			
8			

Número N	Acerto
0	

7) Tarefa de Adição

- Ilustrar cada adição colocando a primeira quantidade de maçãs dentro da caixa (n1) adicionado em seguida a segunda quantidade (n 2).
- Dizer quantas maçãs colocou na caixa, e quantas adicionou, sem conta-las individualmente nem dizer a resposta.
- A criança pode responder com auxílio dos dedos.
- Usar $2+1$ como demonstração, estimulando a criança a usar os dedos enquanto adiciona as maçãs.
- Interromper o bloco 2 após 3 erros consecutivos.

Bloco 1			
item	Cálculo $(\mathbf{n} \mathbf{+ n} \mathbf{n})$	resposta	estratégia
$\mathbf{e x}$	$2+1$	-	-
$\mathbf{1}$	$2+3$		
$\mathbf{2}$	$1+2$		
$\mathbf{3}$	$3+1$		
$\mathbf{4}$	$1+3$		
$\mathbf{5}$	$2+2$		
$\mathbf{6}$	$4+1$		
$\mathbf{7}$	$3+2$		
$\mathbf{8}$	$2+1$		
$\mathbf{9}$	$1+4$		
$\mathbf{1 0}$	$1+1$		

Bloco 2			
item	Cálculo (n1 + n2)	resposta	estratégia
$\mathbf{1 1}$	$5+2$		
$\mathbf{1 2}$	$4+3$		
$\mathbf{1 3}$	$4+4$		
$\mathbf{1 4}$	$1+5$		
$\mathbf{1 5}$	$3+3$		
$\mathbf{1 6}$	$2+4$		
$\mathbf{1 7}$	$2+5$		
$\mathbf{1 8}$	$5+5$		
$\mathbf{1 9}$	$4+2$		
$\mathbf{2 0}$	$3+4$		
$\mathbf{2 1}$	$5+1$		

Escore Bloco 1: \qquad Escore Bloco 2: \qquad Escore Total: \qquad
Estratégias: (a) respondeu de cor; (b) fez n1 e n2 na mesma mão; (c) fez n1 e n2 em mãos diferentes; (d) fez maior + menor; (e) fez menor + maior. (anotar todas as estratégias usadas).

8) Peg-test

- Os pinos devem ser encaixados, um a um, nos buracos na outra parte do estojo, em qualquer ordem. L os pinos devem ser removidos, um a um, e colocados novamente na parte funda do outro lado do estojo.
- A mão não utilizada deve firmar o bloco, na mesa, segurando na parte que contém os buracos.
- Se um pino cair, a criança deve pegá-lo sozinha.
- Se ela usar a outra mão para colocar ou remover um pino, esse pino deve ser devolvido para ser feito novamente.

Mão dominante		Mão não-dominante	
$1^{\mathrm{a}}:$	$2^{\mathrm{a}}:$	$1^{\mathrm{a}}:$	$2^{\mathrm{a}}:$

9) Tarefa de detecção de rimas

- Cada folha desse caderno tem três figuras. Duas dessas figuras têm o nome com sons parecidos. Os nomes dessas figuras rimam, por exemplo: milho tem o som parecido com trilho ou com águia?" Mostrar item Ex1
- Nos exemplos, elogiar os acertos, e indicar os erros!
- A partir do 4° item não dar mais feedback.
- Em todos os itens, dizer o nome das imagens, conforme exemplo acima, perguntando quais tem som parecido.
- Na coluna Resposta, marcar 1 para acerto e 0 para erros.

10) Leitura de Números Arábicos

- Tarefa realizada no computador (powerpoint). • Não interromper!
- Registrar respostas erradas como foram lidas.

	Num.	Resposta		Num.	Resposta		Num.	Resposta
1	3		13	17		25	100	
2	8		14	19		26	400	
3	7		15	40		27	105	
4	2		16	80		28	160	
5	6		17	47		29	370	
6	9		18	92		30	850	
7	0		19	26			Total:	
8	5		20	32				
9	1		21	41				
10	4		22	78				
11	12		23	85				
12	15		24	67				

11) Comparação de pontos (PC - PANAMATH)

- Ir em "Set advanced Options" e em Subject ID colocar: Primeiro Nome _ Iniciais do Sobrenome _ escola. Clicar em "Close"e depois em Start Experiment
- Ao iniciar o experimento aparecerá uma tela com os dois personagens e um sinal de +. Nesta tela você deve dar a instrução do teste (a criança deve indicar qual tem mais bolinhas), e apertar a Barra de Espaço para começar! Não há treino!

12) Comparação simbólica ($\mathbf{P C}$ - presentation)

- Nomear o participante: Primeiro Nome _ Iniciais do Sobrenome _ escola
- Copiar arquivo para o pendrive (manter cópia no computador)

13) Estimação de pontos (PC - presentation)

- Nomear o participante: Primeiro Nome _ Iniciais do Sobrenome _ escola

14) Velocidade de Contagem (PC - presentation)

- Nomear o participante: Primeiro Nome _ Iniciais do Sobrenome _ escola
- Assim que a criança terminar de contar, apertar a barra de espaço para registrar o tempo no computador e passar para o próximo estímulo.
- Registrar a resposta dada no próprio computador.

15) Estimação de dedos (PC - presentation)

- Nomear o participante: Primeiro Nome _ Iniciais do Sobrenome _ escola
- Dizer a quantidade de dedos levantados, sem contar.
- Registrar o tempo de reação com a tecla Espaço, anotar a resposta dada, e apertar Enter para registrar a resposta.

16) Tarefa de tempo de reação ($\mathbf{P C}$ - presentation)

- Nomear o participante: Primeiro Nome _ Iniciais do Sobrenome _ escola
- Esta tarefa também é um treino para a criança se acostumar com o uso do computador.
- Enfatizar que as respostas precisam ser rápidas.

17) Matrizes Progressivas Coloridas de Raven

Itens	A		AB		B	
1		1		1		
2		2		2		
3		3		3		
4		4		4		
5		5		5		
6		6		6		
7		7		7		
8		8		8		
9		9		9		
10		10		10		
11		11		11		
12		12		12		
Total Parcial						

Total de Acertos (Max.: 36):

Percentil:

\qquad

18) Tarefa de Rotação mental

- No primeiro item de treino, deixar a criança manipular as peças e encaixar a correta. Depois desse item avisar que agora deve tentar resolver de cabeça, sem encostar nas peças.
- Sempre que errar, apontar o erro e pedir para tentar encaixar a imagem correta (permitir que pegue a peça e a encaixe).

item	ângulo	resposta									
ex1	0	B	3	60	B	11	90	A	19	120	B
ex2	180	B	4	90	A	12	0	B	20	30	A
ex3	0	A	5	150	A	13	30	B	21	180	A
ex4	45	B	6	60	B	14	0	A	Total acertos:		
ex5	135	A	7	90	B	15	180	B			
ex6	180	B	8	120	A	16	150	A			
1	0	B	9	150	B	17	180	B			
2	30	A	10	120	A	18	60	A			

[^0]: Endereço: CAMPUS UNIVERSITÁRIO DARCY RIBEIRO - FACULDADE DE DIREITO - SALA BT-01/2 - Horário de
 Bairro: ASA NORTE CEP: 70.910-900
 UF: DF Município: BRASILIA
 Telefone: (61)3107-1592 E-mail: cep_chs@unb.br

[^1]: Bairro: ASA NORTE
 CEP: 70.910-900
 UF: DF Município: BRASILIA
 Telefone: (61)3107-1592

